Linear-Scaling Quantum Chemistry:

Coupled Cluster

Divide-Expand-Consolidate (DEC)

Scheme

Dmytro Bykov OLCF, ORNL

May 18, 2018

Motivation

Support, Explain and Guide the Experiment

- a) DFT is a "working horse" in ab initio methods
- b) Coupled cluster theory is the method of choice
- c) Hierarchies of coupled models with improved accuracy

MP2 : Second order Møller Plesset theory , N⁵ scaling

CCSD : Coupled cluster singles and doubles model, N⁶ scaling

CCSD(T): CCSD with perturbative triples corrections, N⁷ scaling

CCSD(T) is the gold standard of quantum chemistry

Many molecular properties are described to experimental accuracy or better e.g. equilibrium geometries and reaction enthalpies

Problem: The scaling in standard implementations

Scaling in Coupled Cluster theory CCSD(T)

Coupled cluster wave function calculation

Hartree-Fock calculation determines the reference state

- Electrons move in an averaged field of the others
- Long range potential described to high accuracy
- Give local orbitals for both occupied and virtual space

Coupled cluster calculation describes local electron correlation effects

Coulomb hole, Short range

• Dispersion forces, *R*⁻⁶

Local phenomena described in local basis give linear scaling

Determine local Hartree-Fock orbitals

Occupied orbitals: i,j,k,l

Virtual orbitals: a,b,c,d

Atomic sites: P,Q,R,S

Assign orbitals to atomic sites

INSULIN MOLECULE (HYDROGENS OMITTED)

The Divide-Expand-Consolidate DEC coupled cluster (CC) method

Method

- Local occupied and virtual HF orbitals must be determined
- Assign *local occupied* and *virtual* HF orbitals to atomic sites, P,Q,...
- Partition correlation energy into atomic fragment E_P and pair ΔE_{PQ} energies
- Evaluate E_P and ΔE_{PQ} from small orbital fragment spaces adjusted to give the energies to a predefined fragment optimization threshold (FOT)

Features

- Adjustable orbital spaces give error control for energies and amplitudes
- Black box, linear scaling, and embarrassingly parallel

Precision of Coupled Cluster calculation

Standard Coupled Cluster

• Residual norm (*R*) of amplitude equation

DEC Coupled Cluster (new strategy which exploit locality efficiently)

• Fragment optimization threshold (*FOT*) for atomic fragment energies

Standard and DEC Coupled Cluster on par with respect to precision

Single parameter (R or FOT) define the precision of energy, density, ...

Correlation energy MP2 and CCSD

Quadratic scaling

$$E_{corr} = \sum_{ijab} (t_{ij}^{ab} + t_i^a t_j^b)(2g_{iajb} - g_{ibja}) \qquad \qquad E_{corr} = \sum_{P} E_P + \sum_{P>Q} \Delta E_{PQ}$$
Coulomb hole Dispersion energy

DEC Strategy

Assign local orbitals to atomic sites P,Q,...

Occupied atomic fragment energy

Replace summation over two occupied i,j (virtual a,b) orbitals with summations over sites P and pair sites P,Q and summations over orbitals belonging to these sites

$$E_{P} = \sum_{\substack{ij \in P \\ ab}} \left(t_{ij}^{ab} + t_{i}^{a} t_{j}^{b} \right) \left(2g_{iajb} - g_{ibja} \right)$$

Occupied pair interaction energy

$$\Delta E_{PQ} = \sum_{\substack{i \in P, j \in Q \\ ab}} \left(t_{ij}^{ab} + t_i^a t_j^b \right) \left(2g_{iajb} - g_{ibja} \right) + P \longleftrightarrow Q \text{ term}$$

No approximations have so far been made, only a reorganization

Atomic fragment energy E_P

$$E_{P} = \sum_{ij \in P} \left(t_{ij}^{ab} + t_{i}^{a} t_{j}^{b} \right) \left(2g_{iajb} - g_{ibja} \right)$$

Determine [P] in a black box manner such that errors in E_P is smaller than Fragment Optimization Threshold (FOT)

CCSD and MP2

Charge distributions in integrals determine distance decay from site P

$$g_{iajb}$$
 ; $i, j \in P$, $a, b \in [P]$

Occupied space partitioning of E_{corr}

Occupied atomic fragment energy

$$E_{P} = \sum_{\substack{i \in P, j \in P \\ ab \in [P]}} \left(t_{ij}^{ab} + t_{i}^{a} t_{j}^{b}\right) \left(2g_{iajb} - g_{ibja}\right)$$

(atomic fragment orbital space)

Occupied atomic pair interaction energy

$$\Delta E_{PQ} = \sum_{\substack{i \in P, j \in Q \\ ab \in [P] \cup [O]}} \left(t_{ij}^{ab} + t_i^a t_j^b \right) \left(2g_{iajb} - g_{ibja} \right) + P \longleftrightarrow Q \text{ term}$$

(union of atomic fragment orbital spaces)

Distance decay of E_P

Insulin - pair interaction energies ΔE_{PQ}

Pairs separated by more than ~10 Å can be neglected without affecting the precision of the calculation

Linear scaling algorithm

Insulin - three examples of atomic fragments

$$E_{\rm corr} = \sum_P E_P + \sum_{P>Q} \Delta E_{PQ} \qquad \qquad {\rm Quadratic\ scaling}$$

Summary of the DEC scheme

OAK RIDGE National Laborator

Parallelism in DEC calculation

Parallelism at three levels

Coarse grained parallelism

All fragment calculations E_P and ΔE_{PQ} carried out independently

Medium and fine grained parallelism
Individual fragment calculations
parallelized at two levels
(MPI and OpenMP)

(as in conventional implementations)

DEC Error vs. FOT

4 glycine residue in α-helix structure

cc-pVDZ

Dodecanoic acid

cc-pVTZ

FOT	10 ⁻³	10 ⁻⁴	10 ⁻⁵	FOT	10 ⁻³	10 ⁻⁴	10 ⁻⁵
Δ ΜΡ2	3.61 10-2	5.36 10 ⁻³	3.99 10-4	Δ ΜΡ2	4.68 10 ⁻²	4.54 10 ⁻³	5.50 10 ⁻⁴
Δ CCSD	9.33 10 ⁻³	1.16 10 ⁻³	-6.03 10-4	ΔCCSD	2.77 10 ⁻³	6.93 10 ⁻⁴	-1.37 10 ⁻⁵
ΔCCSD(T)	2.06 10 ⁻²	3.06 10 ⁻³	-2.81 10 ⁻⁴	Δ CCSD(T)	3.78 10 ⁻²	2.59 10 ⁻³	3.49 10 ⁻⁴

Pair interaction energies ΔE_{PQ}

alpha-helix with 4 glycine residues

cc-pVDZ

DEC Correlation energy(au) vs. FOT

FOT	10 ⁻³	10-4
MP2	-11.41503	-11.59505
CCSD	-12.18642	-12.25120
CCSD(T)	-12.63602	-12.74882

• 10⁻⁴ DEC-CCSD(T) is possible with current computer facilities for large systems

Test set results

DEC examples

- Calculate MP2 correlation energy and density using cc-pVDZ basis.
- Nanospresso (system 1): 528 atoms (4278 BF.)
- Nanospresso Doppio (system **2**): 1056 atoms (8556 BF.)
- Parallel (strong) scaling (ideal: 0.5)
 TTS(11780) / TTS(5890) = 0.56 (system 1)
 TTS(11780) / TTS(5890) = 0.53 (system 2)

Nanospresso

Conclusion for DEC

- New strategy for CC energy and properties which explore locality efficiently
- Full system in terms of CC calculations on small fragments of total orbital space
- Linear scaling and massive parallel algorithm
- Full control of errors in energy and cluster amplitudes
- Black box method

DEC perspective

MP2

- Energy, density, molecular gradient and geometry optimizer
- F12 energies, Nuclear shifts, ...

CCSD

- Energy implemented
- Future work, density, molecular gradient, F12 energy ...

CCSD(T)

- Energy implemented
- Future work, density, molecular gradient, ...

Thanks!

ORNL:

- D. Liakh
- A. Barnes
- D. Bykov

Aarhus:

- P. Ettenhuber,
- J. Erikssen,
- K. Kristensen,
- P. Baudin,
- T. Kjaergaard,
- Y. M. Wang,
- F. Pawlowski

P. Jørgensen

